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Abstract. Human activity influences wildlife. However, the ecological and conservation significances of these
influences are difficult to predict and depend on their population-level consequences. This difficulty arises partly
because of information gaps, and partly because the data on stressors are usually collected in a count-based man-
ner (e.g., number of dead animals) that is difficult to translate into rate-based estimates important to infer popula-
tion-level consequences (e.g., changes in mortality or population growth rates). However, ongoing methodological
developments can provide information to make this transition. Here, we synthesize tools from multiple fields of
study to propose an overarching, spatially explicit framework to assess population-level consequences of anthro-
pogenic stressors on terrestrial wildlife. A key component of this process is using ecological information from
affected animals to upscale from count-based field data on individuals to rate-based demographic inference. The
five steps to this framework are (1) framing the problem to identify species, populations, and assessment parame-
ters; (2) field-based measurement of the effect of the stressor on individuals; (3) characterizing the location and size
of the populations of interest; (4) demographic modeling for those populations; and (5) assessing the significance
of stressor-induced changes in demographic rates. The tools required for each of these steps are well developed,
and some have been used in conjunction with each other, but the entire group has not previously been unified
together as we do in this framework. We detail these steps and then illustrate their application for two species
affected by different anthropogenic stressors. In our examples, we use stable hydrogen isotope data to infer a
catchment area describing the geographic origins of affected individuals, as the basis to estimate population size
for that area. These examples reveal unexpectedly greater potential risks from stressors for the more common and
widely distributed species. This work illustrates key strengths of the framework but also important areas for sub-
sequent theoretical and technical development to make it still more broadly applicable.
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INTRODUCTION

Human activity influences wildlife. For exam-
ple, on an annual basis in the United States, elec-
tric transmission and distribution lines kill
between 12 and 64 million birds (Loss et al.
2014a), vehicle collisions kill between 89 and 340
million birds (Loss et al. 2014b), and wind tur-
bines kill between 200,000 and 700,000 bats
(Arnett and Baerwald 2013, Hayes 2013). How-
ever, the ecological and conservation significance
of these fatalities is dependent on their
population-level consequences, which in turn is
influenced by factors like population size and
life-history traits (e.g., reproductive strategy). As
such, the human-caused death of 1 million r-se-
lected chipping sparrows (Spizella passerine; U.S.
population estimate 100 million; Partners in
Flight (PIF) 2019) would be dramatically less rel-
evant to population viability and conservation
objectives than the death of 1% that number of
deaths of K-selected golden eagles (Aquila
chrysaetos; U.S. population estimate 40,000; PIF
2019). The demographic relevance of fatalities is
also influenced by the size, demography, spatial
distribution, and geographic origin of affected
populations, as well as the timing of fatalities
(Martin 2015, Griesser et al. 2017, Hunt et al.
2017). Furthermore, non-lethal anthropogenic
stressors also can reduce offspring production or
change behavior (Bonnington et al. 2013,
Thompson et al. 2015, Winder et al. 2015) in
ways that are consequential for populations.

These subtleties create challenges to under-
standing or predicting population-level
responses of wildlife to lethal and non-lethal
anthropogenic stressors. In fact, this process
requires addressing a complex set of difficult-to-
answer questions. These include (1) How many
individuals have been affected? (2) How are
those individuals affected (e.g., direct vs. indi-
rect, lethal vs. sublethal, density-dependent vs.
density-independent effects)? (3) How can the
consequence of the stressor to those populations
be characterized? (4) How large are the source
populations for those individuals and how are
they spatially organized? (5) How is it decided if
those consequences are relevant?

The difficulty in answering these key questions
comes in part because the information needed to

solve them often is unavailable. However, ongo-
ing methodological developments have resulted
in new tools that can help provide that informa-
tion. This methodological evolution comes on
two fronts and at two spatial and demographic
scales. One front is driven by the rapid expansion
of renewable energy facilities and the creation of
new regulations and guidelines to monitor site-
specific impacts of these facilities on wildlife. The
other arises from ecological or conservation-ori-
ented fields of biogeographical study that
consider data on a landscape or population scale.
At many renewable energy facilities, there have

been environmental assessments to estimate pre-
construction abundance of wildlife populations
and post-construction numbers of fatalities (e.g.,
Conkling et al. 2020). These numerical assess-
ments use a newly developed suite of field-based
and statistical tools for collecting and interpreting
survey data (e.g., Dalthorp et al. 2018). As a con-
sequence, they often can answer the first key
question above, about how many individuals are
affected. That said, these environmental assess-
ments are usually focused on numbers of individ-
uals or fatalities at a single site, and they provide
little information on larger-scale, population-level
impacts (Loss et al. 2015).
Landscape- and population-scale tools devel-

oped in the last two decades provide a different
set of information that could be useful to under-
standing how wildlife are affected by stressors
(the second and third key question above). The
study of migratory connectivity (Webster et al.
2002, Greenberg and Marra 2005, Cohen et al.
2018) characterizes linkages between geographi-
cally distinct areas used by a population during
different portions of its annual cycle. Likewise,
population viability analysis (PVA) is designed
to inform conservation programs for at-risk spe-
cies by assessing the relevance of stressors to
population persistence (Morris et al. 1999).
Finally, ecologically focused full annual cycle
models evaluate the consequences of variation in
demographic rates over different portions of
organisms’ annual cycles (e.g., breeding, migra-
tion, and stationary nonbreeding; Hostetler et al.
2015, Oberhauser et al. 2017, Rushing et al.
2017). All three of these tools are frequently
applied at very broad spatial scales and can be
effective at identifying how wildlife are affected.
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However, with a few exceptions, they are not
designed to incorporate individually based site-
specific count data such as those described
above.

Integration of these local- and landscape-scale
tools is therefore an important priority, and it
involves answering the fourth and fifth key ques-
tions above. Prior frameworks that have been
proposed to combine these concepts generally
address only a subset of those questions. As an
example, published work has focused on defin-
ing the population of interest and the conse-
quence of a stressor (Morrison and Pollock 1997),
on defining if impact is consequential (Cook and
Robinson 2017), and on the key considerations
required for those two definitions (May et al.
2019). Likewise, prior efforts to integrate the
identification of affected subpopulations with the
estimation of population-level impacts generally
have focused only on a single species (Pylant
et al. 2016, Frick et al. 2017, Katzner et al. 2017)
or a specific site (Smallwood and Thelander
2008, Desholm 2009) and thus are difficult to
generalize across taxa, regions, and time periods.

As a result of this limited degree of integration,
local count data are independent of the context
provided by landscape-level information about
the population of interest. Consequently, it can
be difficult for conservation practitioners to inter-
pret field-based count data in the context of pop-
ulation-level rates of change. In practical terms,
this means that a site manager with counts of
individuals killed can have difficulty interpreting
the relevance of those data relative to reductions
in the population growth rates. These difficulties
inhibit assessments of the consequences to wild-
life of many anthropogenic stressors (Loss et al.
2012, 2015). Making this leap, from count-based
field data to rate-based estimates describing the
larger population (i.e., upscaling; May et al.
2019), therefore is critical to interpreting the rele-
vance of models describing the consequence of
anthropogenic stressors on wildlife populations.

Here, we propose an overarching, spatially
explicit approach to integrate site-specific
and landscape- or population-scale tools into a
single framework to assess population-level con-
sequences of anthropogenic stressors. We begin
by proposing a five-step framework to upscale
from individual-level effects to population-level
consequences. This process uses a series of well-

developed tools from a variety of different fields,
and, in each step, we provide background on
these tools. Our proposed framework provides a
novel, management-relevant unification of these
separate tools. Next, we apply this framework to
two specific cases for which we have data—solar
energy caused fatalities of a range-restricted
ground predator in the Mojave Desert, USA, and
wind turbine caused fatalities of a widely dis-
tributed raptor species in central California,
USA. Finally, we illustrate the broad applicability
of our approach to other sources of anthro-
pogenic fatality of wildlife, and we discuss gaps
and next steps for further development of this
analytical and conceptual framework.

CONCEPTUAL FRAMEWORK

The five-step framework we propose to
upscale from individual-level to population-level
consequences integrates tools from the fields of
ecology and conservation biology. The five steps
in the framework (Fig. 1) are (1) framing the
problem to identify species, populations, and
assessment parameters; (2) using field-based
count data to quantify the effect of the stressor
on individuals; (3) characterizing the location
and size of the population of interest; (4) building
rate-based demographic models for the popula-
tion; and (5) integrating information from steps
2, 3, and 4, to assess the significance to the popu-
lation of the rate changes brought on by the stres-
sor. These steps are detailed below.

Framing the problem
The first step in our proposed framework is

planning and decision-making about the pro-
cess itself, to identify key species, populations,
and assessment parameters. Although it may
seem too obvious to mention, this step bears
discussion here because of the potential for a
gap between research activity and implementa-
tion of conservation actions (Adams et al.
2019). When preparing to assess demographic
effects to wildlife of anthropogenic stressors, it
is therefore important that those implementing
a research framework understand the goals
and implementation capacity of key stakehold-
ers. Key questions to address are the species
on which to focus, how to define the popula-
tion of interest (i.e., What population or
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subpopulation is relevant to the stakeholders?),
which demographic parameters should be the
focus of comparisons (i.e., Are some parame-
ters more or less likely to be affected by the
stressor? Given local constraints, are some
parameters more amenable to monitoring or
potential mitigation?), what level or type of
sampling is required to ensure sufficient statis-
tical power to detect population change
(Maclean et al. 2013, Sur et al. 2018), and how
population-level effects will be evaluated (i.e.,

what are the costs and benefits of using the
different types of assessment tools we outline
in step 5 of the framework).

Use field-based count data to quantify the effect
of the stressor on individuals
Once the initial framing of the problem is com-

plete, the next step is to quantify stressor effects
on individuals in the population of interest. To
do this, context-specific data, usually field-based
counts, need to be collected on the individuals

Fig. 1. Schematic of a proposed framework to assess population-level consequences of anthropogenic stressors
on wildlife. Square boxes are steps in the process; circles are outside information required to process each step.
Abbreviations in step 5 are described in the main text. Numbers for each step match those in Appendices S1, S2.
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affected, and on the direction and magnitude of
that effect. Such studies usually require an exper-
imental design that allows comparison of moni-
toring data collected pre- and post-construction
or on- and off-site (Conkling et al. 2020). In the
case of direct mortality effects, design of field
surveys requires estimation of detection and car-
cass removal rates (Huso 2011, Huso and
Dalthorp 2014, Huso et al. 2016). Quantifying
other parameters, including pre- and post-con-
struction density or abundance, requires similar
adjustments for detection probabilities (Bibby
et al. 2000).

Characterize the location and size of the
population of interest

The population of interest can be either the
entire global population of a species or a subset
of that population. Defining the size and location
of the population of interest presents challenges
and has implications for assessing population
trends and demographic characteristics (Cook
et al. 2011). This is especially the case when that
definition incorporates spatial or temporal varia-
tion in location, age structure, or seasonal
changes in behavior.

The most common approach to defining the
population of interest relies on political bound-
aries. For example, Bastos et al. (2016) modeled
human impacts to the population of Eurasian
skylark (Alauda arvensis) in a 21,515-km2 area of
northern Portugal that was delineated by the
country’s boundaries. Likewise, political bound-
aries have been used to define the population of
interest in studies of the impacts of wind energy
facilities on wildlife. In a few of these cases, the
population of interest has been defined to
include all Egyptian vultures (Neophron perc-
nopterus) in peninsular Spain (Carrete et al.
2009), all red kites (Milvus milvus) in a single
German state (Bellebaum et al. 2013), or all red
kites in Switzerland (Schaub 2012). In these
cases, numerical estimates of population size
are often based on survey data collected exclu-
sively within those regions. Defining biological
populations based on political boundaries often
addresses goals of funding agencies, but this
approach is only useful in some specific cases
(i.e., Arrondo et al. 2018) and can introduce bias
because it often ignores movements across those
boundaries.

Other ways to define the population of interest
are more biologically based. The simplest
approach assumes that the model applies to the
entire population of a given species or sub-
species. Some of the earliest applied population
models for structured populations used such a
framework (e.g., Crouse et al. [1987] never really
defined the population of interest, Doak [1995]
considered an entire disjunct population). More
recently, models of the effects of bat fatalities
from wind turbines also have considered conti-
nent- or country-wide populations (Erickson
et al. 2016, Frick et al. 2017). However, it is not
always appropriate to define the population of
interest as all individuals of a population or spe-
cies because most stressors only threaten a subset
of the population (Diffendorfer et al. 2017).
When that subpopulation is small or easily cen-
sused, such an approach is straightforward (Free-
man et al. 2014). In other situations, defining the
appropriate subpopulation creates challenges.
A useful way to refine definitions of the popu-

lation of interest is by interpreting demographic
or ecological data to infer the origins of affected
individuals. At the most basic level, this entails
using information on the distribution and abun-
dance of species affected by a stressor to inform
population estimates. For example, most species
of birds shot on islands in the Mediterranean do
not breed on those islands (Panuccio 2005). In
this situation, range maps and descriptions of
migratory flyways can be used to infer informa-
tion about the origin of these individuals. More
detailed site-specific information, such as pre-
vailing directions of migration and observational
records, can also be used to infer information
about origins of affected individuals (Desholm
2009). Marking, tracking, or modeling tools also
have potential to refine definition of the popula-
tion of interest and its spatial structure. For
example, band recovery databases (USGS Bird
Banding Laboratory 2019), species distribution
models (Santos et al. 2013), active animal track-
ing (Bridge et al. 2013), and passive genetic
(Clegg et al. 2003, Hull et al. 2008, Ruegg et al.
2014) or isotopic (Hobson and Wassenaar 2018)
approaches, have been used to derive origins of
sampled individuals and to understand migra-
tory connectivity.
Despite the frequent use of this last set of tools

in ecological literature, they are infrequently
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applied to assess origins of animals affected by
anthropogenic stressors. One of the few excep-
tions is the recent use of stable hydrogen isotope
analysis to estimate a catchment area to describe
the origin of migratory bats killed at wind tur-
bines in Germany (Voigt et al. 2012). Isotopes
have also been used to ascribe a local or non-lo-
cal catchment area to wildlife killed at renewable
energy facilities (Vander Zanden et al. 2018).
Similarly, combinations of genetic markers and
isotope techniques have been used to identify the
catchment area and origin of bats (Pylant et al.
2016) and birds (Katzner et al. 2017) killed at
wind energy facilities.

Once a catchment area is defined, then it is pos-
sible to generate estimates for the number of indi-
viduals within that area. This is more easily done
for some species than others. For example, some
states, countries, and NGOs publish estimates of
sizes of wildlife populations (Clark et al. 2000,
Flather et al. 2009, BirdLife International 2016, PIF
2019). The quality of these estimates varies dra-
matically, with some based on expert opinion and
others derived from empirical data. Regardless,
the spatial extent of these estimates may closely
approximate the distribution of the population of
interest. In these cases, those data are directly rele-
vant to population estimation in applied settings.
In other cases, including in our examples below,
the spatial extent of the population of interest does
not match well with the spatial extent of the area
for which there is a population estimate. In these
situations, population estimates must be modified
to create a context-specific and uncertainty-ad-
justed estimates of the number of individuals
within the catchment area that are potentially
affected by the stressor. Integrating distributional
information derived from demographic or ecologi-
cal information from the affected individuals,
together with estimates of population size, is
rarely used to inform estimates of the size of the
population of interest. That said, estimates of the
number of potentially affected individuals usually
are necessary to understand population-level
impacts of anthropogenic stressors.

Build rate-based demographic models for the
population

Compared to defining the population of inter-
est, it is relatively straightforward to identify
demographic parameters and to estimate how

they are affected by anthropogenic stressors. This
is because impact assessment is usually achieved
through population modeling, and the tools to
model biological populations have been applied
for nearly a century (Lotka 1920, Volterra 1926,
Caswell 2001). Typical modern models require
marking animals (mark–recapture models; White
and Burnham 1999), or tracking individuals (in-
dividual-based models; Shugart et al. 1992,
DeAngelis and Mooij 2005), populations (simula-
tion models; Katzner et al. 2006), or vital rates
(Leslie matrix models, Caswell 2001; or their
Bayesian equivalents, Link and Barker 2010, K�ery
and Schaub 2011, Zipkin and Saunders 2018).
Any of these monitoring and modeling
approaches would be suitable for use in our
framework, and the choice of the best approach
is likely context-specific (Besbeas et al. 2002, Wil-
liams et al. 2002).
The decision regarding which vital rates to

assess is important especially because parameter
choice can influence conclusions about popula-
tion dynamics (Cook and Robinson 2017).
Anthropogenic effects to populations are most
frequently estimated by changes in rates of popu-
lation growth (lambda or k; Schaub 2012,
Gr€ukorn et al. 2017), adult survival or mortality
(Carrete et al. 2009, Bellebaum et al. 2013, Erick-
son et al. 2015, 2016, Bastos et al. 2016, O’Brien
et al. 2017), or probability of extinction (or its
derivatives; Frick et al. 2017). Other parameters
less often considered include reproductive out-
put (Steenhof et al. 2014) or age ratios (Balbont�ın
et al. 2003). Demographic parameters such as
immigration, emigration, and pre-adult repro-
ductive rates are sometimes incorporated into
models to refine parameter estimation and pre-
dictive accuracy but are rarely used to assess
impacts of stressors on populations. However,
regardless of the demographic rate under consid-
eration, caution must be used when interpreting
model outputs, since rates vary among popula-
tions and regions (Rushing et al. 2017, Saunders
et al. 2019). It follows that application of rates
that are inaccurate or irrelevant for the popula-
tion of interest can produce model outputs mean-
ingless to that population (White 2000).
Finally, although population size is of key

importance to most managers, it is rarely incorpo-
rated into rate-based demographic models. How-
ever, demographic models can be parameterized
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with estimates of vital rates and current popula-
tion sizes. Projections from these models can then
be the basis for estimating changes in population
size caused by the stressor. Applying vital rates to
numerical estimates is an essential step in the pro-
cess of upscaling from individually based count
data to population-level consequences.

Assess the significance to the population of the
rate changes brought on by the stressor

Simulation models, PVAs, and similar
tools are established approaches that allow fore-
casting of population declines. Likewise, there is
also a set of metrics that can be applied to demo-
graphic rates specifically to define the popula-
tion-level consequence of a stressor. One such
metric is estimated by potential biological
removal (PBR; Wade 1998, Runge et al. 2009,
Bellebaum et al. 2013, Diffendorfer et al. 2017,
Zimmerman et al. 2019). PBR is defined as a
fixed harvest rate that may be applied to a popu-
lation, while allowing that population to reach or
maintain some optimum (Runge et al. 2009, Diff-
endorfer et al. 2017) or without causing extinc-
tion (O’Brien et al. 2017). However, PBR has
been criticized because of its reliance on weakly
founded assumptions, because it considers
allowable take from all human-caused fatality
sources rather than a single source of interest,
and because even PBR-informed take can cause
population declines (Green et al. 2016).

Two other approaches to understanding the
demographic significance of anthropogenic
impacts are acceptable biological change (ABC)
and decline probability difference (DPD; Green
et al. 2016, Cook and Robinson 2017). ABC esti-
mates the amount of anthropogenic take that
results in a 33% probability of a defined popula-
tion target being achieved (Cook and Robinson
2017). This metric has been criticized because it
deals poorly with uncertainty and because the
33% threshold is adapted from another field (from
the climate change guidelines detailed in Mastran-
drea et al. 2010). As such, it may be arbitrary rela-
tive to biologically meaningful thresholds at
which anthropogenic take becomes unsustainable
(Green et al. 2016, Cook and Robinson 2017). DPD
compares the probability that a population would
decline in scenarios with and without a single
anthropogenic stressor. Like ABC, DPD also is
subject to criticism due to its reliance on difficult-

to-estimate probabilities and its failure to effec-
tively deal with uncertainty (Green et al. 2016,
Cook and Robinson 2017).
A potentially more robust way to identify

whether impacts are relevant to conservation of
populations is a ratio-based comparison of sce-
narios derived from population models with and
without the anthropogenic stressor (i.e., a coun-
terfactual of impacted and unimpacted popula-
tions or CIU, in Cook and Robinson 2017). The
ratio-based approach of CIU is an extension of
comparisons (not ratios) that have been con-
ducted with parameters such as density of adults
(Bastos et al. 2016) or probability of extinction
(Carrete et al. 2009), and among different man-
agement scenarios (Schaub 2012). Initially pro-
posed exclusively for matrix models and a single
parameter, population size (Green et al. 2016),
counterfactual ratios may also be implemented
for other demographic rate parameters (Cook
and Robinson 2017). Furthermore, if paired with
a sensitivity analysis, the CIU could provide
important insight in situations where field data
are limited and effect measurement uncertain, as
is often the case when wildlife are affected by
anthropogenic stressors. Proponents of CIU
argue that it is superior to other approaches
because it depends on fewer assumptions, avoids
artificial thresholds, and, because it is based on
estimation of a ratio of two similar models, it is
relatively robust to mis-specification of model
input parameters (Green et al. 2016). However,
assumptions about the consequences of anthro-
pogenic stressors are only inherent in one of the
two models used to generate the ratio, and if
those assumptions are violated, then the overall
CIU output metric itself may be biased. Further-
more, when evaluating a CIU (or any other
ratio), it is important to be clear as to assump-
tions about the degree to which anthropogenic
fatalities are additive or compensatory.

APPLICATION

Application of our proposed framework is
context-specific. Thus, to illustrate how context
interacts with the framework, we provide exam-
ples of its application for two terrestrial species
affected by different anthropogenic stressors. We
chose these species because they vary in their
global population size, in the size of their
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geographic distributions, in their ecology, in the
anthropogenic stressor that affects them, in the
quality of the data available with which to build
population models, and in the manner with
which we define each species’ catchment area.
Thus, these two species illustrate some of the
flexibility and generality of this framework, as
well as some of the data and assumptions it
requires. Our first example is for a range- and
movement-restricted species for which we use
extrinsic information to define the catchment
area and a combination of extrinsic and intrinsic
information to estimate the number of poten-
tially affected individuals. Our second example
is for a species with more complex distribution
and movement patterns and for which we use a
combination of extrinsic and intrinsic informa-
tion to define both the catchment area and the
size of the potentially affected population.

Greater roadrunners affected by solar energy in
the Mojave Desert

Solar energy is rapidly being developed in resi-
dential and commercial settings as an alternative
to fossil fuels-based energy (O’Shaughnessy
et al. 2018). It is also established that its imple-
mentation has environmental consequences
(Hernandez et al. 2014) for land use, habitat frag-
mentation (Hernandez et al. 2015), and wildlife
(Walston et al. 2016). There are two major types
of systems predominantly used in utility-scale
solar energy generation (Hernandez et al. 2014).
These are photovoltaic (PV), which converts sun-
light into electrical current, and concentrating
solar (CS), which uses reflective surfaces to focus
sunlight and heat a fluid. CS installations some-
times cause wildlife fatalities through collision or
burning (Walston et al. 2016). At PV installations
in the Mojave Desert, waterbirds and other spe-
cies are killed when they collide with or land on
solar panels (Walston et al. 2016).

The greater roadrunner (Geococcyx californi-
anus) is a ground-dwelling, non-migratory, avian
predator (Hughes 2011) that sometimes dies at
solar facilities in the southwestern United States.
Unlike other species, roadrunners are thought
not to be killed by the solar facility itself, but
instead are found dead along fences and of
unknown causes (HT Harvey and Associates
2015). Although the numbers of individuals
found are somewhat low (n = 14 carcasses in one

year at one facility; HT Harvey and Associates
2015), the unknown cause of their death and
their limited dispersal abilities (Unitt 2004) have
focused more attention on the species than might
be given to a broader ranging species that died of
identifiable causes. We applied the five steps of
our framework to estimate the population-level
consequences of roadrunner fatalities at five solar
energy facilities in the Mojave Desert of southern
California. Our process is outlined below and
detailed in Appendix S1.
Framing the problem.—Although we did not

consult with regional wildlife managers, we felt
that management would likely be concerned
most with the population of birds that are
exposed to risk at solar facilities. Therefore, for
the purposes of this example, that subset of birds
became our population of interest. We focused
analysis of impact on adult survival because this
parameter should be directly affected by solar
facilities and because, with the demographic
modeling approach we use (below), survival was
more straightforward to model than was the
population growth rate (k). We chose to assess
the significance of change to adult survival in the
context of the counterfactual (the CIU), and to
improve our inference, we performed a sensitiv-
ity analysis on the CIU.
Use field-based count data to quantify the effect of

the stressor on individuals.—The limited publicly
available fatality data from solar energy facili-
ties rarely include estimates adjusted by scav-
enger removal rates or searcher detection rates
(Conkling et al. 2020). Thus, counts of dead
roadrunners substantially undercount the actual
number of fatalities. However, because these
were the only data available, we used those
unadjusted field fatality count data in our anal-
ysis. These data suggest ~64 roadrunner fatali-
ties per year over the past 8 yr, across the 5
solar facilities we considered (USFWS, personal
communication).
Characterize the location and size of the population

of interest.—We used an odds ratio assignment
process with stable hydrogen isotope data
(Appendix S3: Table S1) to characterize the likely
region of origin of feathers from 24 roadrunner
carcasses from 3 solar facilities (Figs. 2, 3).
Because the assignment analysis suggested that
most birds were from a region approximately
defined by the Mojave Desert Bird Conservation
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Region (BCR 33), and because of the limited dis-
persal capacity of these birds, we constrained the
averaged catchment area to the boundaries of
that BCR and north of the border with Mexico.

We then used the probability surface derived
from the isotope data to modify an estimate of
size of the roadrunner population in that BCR
(PIF 2019). This modified BCR population esti-
mate is the potentially affected population (Np in
Table 1), and it estimates the number of birds
potentially at risk from fatality at solar facilities
(53,973; see Fig. 2; Appendices S1, S3: Table S2
for details and justification).

Build rate-based demographic models for the
population.—We built an age-structured Bayesian
integrated population model (IPM) for roadrun-
ners in our catchment area. The model was
informed by priors taken from published esti-
mates of roadrunner demography and fit to
national-scale bird survey data (Sauer et al.
2017). We used information criteria to determine
the best-fit model as our estimate of current con-
ditions (which include fatalities from solar
energy). We then multiplied the survival rates
from these models by Np as a means to estimate
how many roadrunners survived and died on an
annual basis. We repeated this process under
current conditions and under conditions without
deaths at solar facilities (Dt, Ds, sa, swos; Table 1;
Appendix S1, Appendix S3: Table S3).

Assess the significance to the population of the rate
changes brought on by the stressor.—In this case,
with an estimate of 64 annual fatalities, the coun-
terfactual suggests small effects of fatalities at
solar facilities on the survival rate of greater
roadrunners within BCR 33 (CIU ratio; Table 1).
More importantly, our sensitivity analysis sug-
gested that to drop survivorship by 1% requires
an additional ~200 fatalities of roadrunners per
year, to drop it by 5% would require an addi-
tional ~1500 fatalities per year, and to drop it by
10% would require ~3200 fatalities per year
(Appendix S3: Table S3). These estimates of effect
are conservative, in that they assume that all
fatalities are additive.

Although our CIU and sensitivity analysis sug-
gest that the number of fatalities currently is low
compared to those required for substantive
impacts, they provide a framework to evaluate
what level of fatalities may be cause for concern.
Because field data were uncorrected for detection

and scavenger removal, these fatality counts and
the CIU underestimate the actual impact of these
fatalities to population-level survival rates. That
said, our analysis suggests that even if current
estimates are off by an order of magnitude (i.e., if
there are actually 640 fatalities/year), this would
only cause a ~2% change in survival rates of
roadrunners within the BCR. As such, our sensi-
tivity analysis provides a context and potential
thresholds for managers to interpret potential
increases in numbers of fatalities and to under-
stand the consequences of uncertainty in esti-
mates of mortality rates.

Red-tailed hawks affected by wind turbines in
central California
Wind energy development is an anthropogenic

stressor that affects many types of terrestrial
wildlife (Hutchins and Leopold 2016). Although
there are documented indirect effects of wind
energy on wildlife, via habitat fragmentation and
disturbance, the most obvious and best-studied
impact is direct mortality of volant wildlife from
striking wind turbine blades (Allison et al. 2019).
Among the taxa affected by wind turbines are
soaring birds of prey (Watson et al. 2018). The
largest and most charismatic of these, such as
eagles and griffon vultures, are often of greatest
conservation concern, due to their small popula-
tion sizes and low rates of annual reproduction.
As a consequence, these species typically receive
the most attention when they are killed at wind
energy facilities (de Lucas et al. 2012, Katzner
et al. 2017). Nevertheless, large numbers of other
species are also affected by wind turbine strikes
(ICF International 2016, Thaxter et al. 2017), and
the population-level consequences of those fatali-
ties are poorly known.
In California, USA, one of the species most fre-

quently found dead at wind turbines is the red-
tailed hawk (Buteo jamaicensis; ICF International
2016). Red-tailed hawks have a continent-wide
distribution in North America (Preston and
Beane 2009), and different subpopulations exhi-
bit a wide variety of migratory behaviors (Bloom
et al. 2015). Thus, the birds potentially affected
by wind facilities in California likely include in-
state, year-round residents, as well as migrant,
dispersers, and nomadic individuals from in- or
out-of-state. At the same time, it is unlikely
that birds from throughout the continental
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Fig. 2. Flowchart describing the process of characterizing the population of interest in a proposed framework
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distribution of red-tailed hawks are potentially
exposed to wind turbines in California. There-
fore, it is important to define a catchment area
and identify affected subpopulations, as a pre-
cursor to estimating the size of the population of
birds potentially affected by fatalities at turbines
in the state.

We applied our framework to estimate the
population-level consequences of fatalities of
red-tailed hawks at a single wind energy com-
plex within California, the Altamont Pass Wind
Resource Area (APWRA). Although fatalities at a
single facility are unlikely to be as demographi-
cally relevant as are cumulative effects across
multiple facilities, data from the APWRA are
readily available, making this a useful example.
Our process is outlined below and detailed in
Appendix S2.

Framing the problem.—Once again, our popula-
tion of interest was that describing the origin of
birds killed at turbines at APWRA. We again
focused analysis on adult survival and evaluated
survival of hawks in the context of the counter-
factual.

Use field-based count data to quantify the effect of
the stressor on individuals.—Reports of fatalities of
red-tailed hawks at APWRA are publicly avail-
able for the time period 2005–2013. Unlike in the
roadrunner example, studies at APWRA incor-
porated estimation of detection and scavenging
rates. Thus, the data from APWRA have been
converted into annual estimates that likely rea-
sonably approximate the number of birds actu-
ally killed (�x = 169/yr; range 133–206; ICF
International 2016).

Characterize the location and size of the population
of interest.—We evaluated isotope data from 86
red-tailed hawks killed at APWRA
(Appendix S3: Table S4), although we used those
data differently here than in the prior example.
We again used an odds ratio assignment process
with stable hydrogen isotope data first to iden-
tify 33 birds as being of local origin and 53 as
being of non-local origin (Figs. 2, 4). For the non-

local birds, we again used an odds ratio
approach to identify their region of greatest like-
lihood of origin (Fig. 4). We constrained that
region by the boundaries of the species’ distribu-
tion and of the Pacific and Central Flyways.
Within that constrained catchment area, we used
the probability surface derived from the isotope
data from non-local birds to modify BCR-specific
estimates of the number of potentially affected
non-local birds (Figs. 2, 4; Appendices S2, S3:
Table S5). We summed these modified BCR-
specific population estimates to generate an esti-
mate of the number of potentially affected birds
in the non-local catchment area.
To estimate the size of the potentially affected

local population, because the boundaries of BCR
#32 aligned closely with the isotope-defined local
catchment area, we assumed 100% overlap
between the two. We then used the surface
derived from the isotope data from the birds char-
acterized as local in origin to modify population
estimates for BCR #32 to estimate the size of the
potentially affected population within the BCR.
This process resulted in estimates of 605,484

and 98,217 potentially affected red-tailed hawks
within the non-local and local catchment areas,
respectively (Appendix S3: Table S5). Thus, in
total we estimate that there are 703,701 total
birds potentially affected by this stressor.
Build rate-based demographic models for the

population.—We built separate age-structured
Bayesian integrated population models (IPM) for
the two potentially affected red-tailed hawk pop-
ulations (local and non-local). Models were con-
structed and evaluated as before and we again
multiplied modeled rates by population esti-
mates. This allowed us to estimate how many
hawks from each catchment area would have
died on an annual basis and under scenarios
with and without fatalities at APWRA (Table 1;
Appendix S3: Table S6).
Assess the significance to the population of the rate

changes brought on by the stressor.—Once again,
the CIU suggested relatively minor impacts of

to assess the consequences of stressors to wildlife. The process starts with likelihood of origin maps for each indi-
vidual killed and ends with an estimate of the size of the potentially affected population. Numbering and letter-
ing refer to the detailed steps in Appendix S2, step 3 (these are similar but not identical to those in step 3,
Appendix S1).

(Fig. 2. Continued)
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Fig. 3. Map illustrating the process of identifying the catchment area for the population of greater roadrunners
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the APWRA on the populations of red-tailed
hawks in both the local and the non-local catch-
ment areas (Table 1). Nevertheless, the effect of
wind energy was predicted to be slightly stron-
ger on the local population than the non-local
populations. The sensitivity analysis
(Appendix S3: Table S6) reflected this reality, sug-
gesting that if the true number of fatalities from
the non-local population was 5000 individuals,
survivorship for that population would be only
1.0% lower than current estimates. In contrast, if
all those 5000 fatalities came from the smaller
local population, survival would be reduced by
6.4%. We can also use isotope data to inform
assignment of fatalities and thus risk assessment
for local and non-local populations. For example,
in a scenario where 5000 fatalities occurred, the
current isotope data suggested that 38% (1900
individuals) would be local birds and 62% (3100
individuals) non-local. In this scenario, the CIU
suggests survivorship reductions of 2.4% in the
local population and 0.06% in the non-local pop-
ulation. Again, these estimates conservatively
assume additive mortality.

Red-tailed hawks are probably the most
numerous raptor in California, but also among
the species most commonly killed at wind

facilities within the state (Watson et al. 2018).
Although the true number of fatalities within the
state is unknown, the combined effect of many
different facilities is likely large. As such, when
viewed from the perspective of the combined iso-
tope and demographic analyses, these additional
fatalities suggest the potential for demographic
consequences for local (California) red-tailed
hawk populations.

RELEVANCE, GAPS, AND NEXT STEPS FOR
FURTHER FRAMEWORK DEVELOPMENT

Although our framework does not suggest
substantial impact from these sources of anthro-
pogenic fatality for either red-tailed hawks or
for roadrunners, the potential for effects to the
local population of red-tailed hawks suggested
by the sensitivity analysis was, perhaps, surpris-
ing. This is despite the fact that red-tailed
hawks are probably the most abundant and
evenly distributed raptor in North America. In
contrast, greater roadrunners are a range-re-
stricted species with very specific habitat
requirements and a substantially smaller overall
population size. As such, our examples illustrate
the utility of assessing population consequences

Table 1. Input data and modeled evaluation of population-level consequences of anthropogenic stressors on two
species of wildlife.

Species

Potentially
affected

population (Np)

All deaths/
year in

catchment area (Dt)

Deaths
from

stressor (Ds)
Other

deaths (Do)
Current

survival (sa)

Survival
without

stressor (swos)

CIU
ratio

(swos/sa)

GRRO, all 53,973 20,996 64† 20,932 0.6110 0.6120 1.002
RTHA, local 98,217 20,134 64 20,070 0.7950 0.7956 1.001
RTHA, non-local 605,484 124,124 105 124,019 0.7950 0.7951 1.000

Notes: Considered here are local populations of greater roadrunners (GRRO) affected by fatalities at solar energy facilities in
the Mojave Desert and both local and non-local populations of red-tailed hawks (RTHA) affected by fatalities at the Altamont
Pass Wind Resource Area (APWRA). Source information for each column is described in the main text and the Appendices.
The CIU ratio is a counterfactual, the ratio of the survival without current mortality from solar to the survival in the current
state with mortality from solar.

† Estimates of deaths from solar energy in the Mojave Desert are from count data that do not appear to be based on system-
atic surveys and include no correction for detection probability or scavenger removal. As a consequence, these estimates likely
undercount the actual number of fatalities.

(GRRO) killed at 3 solar facilities in California (Desert Sunlight, Genesis Solar Energy, and Ivanpah Solar Energy
Generation System, indicated by blue-green stars on the map). The map illustrates the averaged probability of
origin for 26 birds killed at these facilities between 2015 and 2017. The probability surface is restricted to the
range of the species in North America (BirdLife International and Handbook of the Birds of the World 2016) and
is overlaid by the outline of Bird Conservation Region 33, where all the facilities were located.

(Fig. 3. Continued)
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Fig. 4. Maps illustrating the process of identifying the catchment area for the population of red-tailed hawks
(RTHA) killed at Altamont Pass Wind Resource Area (APWRA; location indicated by the green star) in Califor-
nia. The maps illustrate the averaged probability of origin for (a) 33 local and (b) 53 non-local birds killed at
APWRA between 2005 and 2017. The probability surfaces are restricted to the range of the species in North
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of anthropogenic stressors in a framework that
incorporates (1) information about the location
of, and population density within, a catchment
area; (2) local vs. non-local origin assignment;
and (3) sensitivity analysis of an impact metric
(here the CIU). These first two especially were
critical to upscaling from count-based data on
individuals to rate-based population-level infer-
ence and the third for exploring consequences
of fatalities across multiple facilities. That said,
despite its usefulness, there is room for
improvement of the framework, in terms of
both the implementation process and the techni-
cal tools it uses.

Strengths, challenges, and process-based areas
for improvement

A strength of this framework is its broad appli-
cability. In particular, it accommodates most ter-
restrial wildlife species, movement strategies, or
geographic distributions, most anthropogenic
stressors or combinations of stressors, most mech-
anisms to define a catchment area, and most con-
sequences to species, whether direct or indirect.
As an example, the framework was informative
for the two species of birds we considered, even
though they have dramatically different life histo-
ries, ecological relationships, and behaviors, and
they were affected by different stressors at differ-
ent spatial scales. Furthermore, although there is
reasonably good demographic and fatality data
for red-tailed hawks, both the demographic data
and the fatality data are poor for roadrunners. In
spite of these differences, the framework allowed
us to draw some level of inference about effects
of stressors on both species and, probably more
importantly, provided insight into conservation
outcomes in potential future scenarios.

Perhaps the greatest challenges to implement-
ing this framework are in the areas where it is
most novel—in using information about the

catchment area to upscale from individually
based count data to rate-based population-level
estimates. In our example, where we paired iso-
tope- or BCR-defined catchment areas with BCR-
derived and isotope-modified estimates of popu-
lation size, these challenges manifested them-
selves in the mismatch between the boundaries
of the catchment area and boundaries of the
BCRs. Furthermore, these challenges were differ-
ent for the highly mobile red-tailed hawk than
for the largely local greater roadrunner. These
inter-species differences are likely not unique
and will likely occur regardless of the species
considered and regardless of the probabilistic
method used to define the catchment area. As
such, there is an important need to develop con-
ceptual and methodological tools to pair proba-
bilistically defined catchment areas with
population estimates defined at different spatial
scales. Especially for highly mobile species, accu-
rate identification of a catchment area likely
requires (1) adaptation of probabilistic statistical
approaches to interpret the data produced by
genetic, isotope, or other approaches that gener-
ate probability surfaces and (2) incorporation of
external information on flyways, distribution,
habitat specialization, migration behavior, and
management.
The transition from count-based to rate-based

estimates was also influenced by a number of
simplifying assumptions we made. For example,
we assumed that red-tailed hawks from BCRs in
the eastern part of the non-local catchment area
(e.g., Montana) were equally likely to be exposed
to risk in California as were individuals in BCRs
in the western part of that same catchment area
(e.g., Nevada). That is unlikely to be the case,
and it would make sense to use a distance-
weighted metric to further adjust our BCR-speci-
fic population estimates prior to making man-
agement decisions.

America (BirdLife International and Handbook of the Birds of the World 2016) and are overlaid on numbered
Bird Conservation Regions. The solid black line in panel (a) is the boundary of BCR 32; in panel (b), it demarcates
the boundaries of the odds ratio-defined “constrained catchment area” for (a) local and (b) non-local hawks
killed at APWRA. The catchment area for local birds is restricted to the BCR in which APWRA is located (BCR
32). The catchment area for non-local birds covers several BCRs; the dotted line running north–south in (b) is the
boundary between the Central Flyway (to the west) and the Mississippi Flyway (to the east).

(Fig. 4. Continued)
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Similarly, assumptions we made to estimate
the extent of catchment area for the hawks influ-
enced the outcome of that analysis. First, we

used an odds ratio assignment process with
stable hydrogen isotope data to define the
boundaries of catchment area. Such a technique

(Fig. 4. Continued)
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is conservative in that it ensures that the majority
of birds potentially at risk are included in our
population estimate. However, being conserva-
tive in this way is risky with regard to conserva-
tion outcomes because, if the actual size of the
affected population is smaller than that identified
(i.e., the animals come from a smaller area than
estimated by the odds ratio), then the demo-
graphic effect of fatalities may be larger than esti-
mated. Thus, in many settings, being more
cautious in estimating population size may be
appropriate. Second, we assumed that all non-lo-
cal birds could be described by a single probabil-
ity-of-origin map. In fact, the stable isotope data
suggest that some of the red-tailed hawk fatali-
ties we considered likely came from areas south
of APWRA and others from areas to the north
(see Katzner et al. 2017 for an example of how
such geographic assignments can be approxi-
mated). Future work could incorporate multiple
probability-of-origin maps for non-local birds,
each clustered by area of origin. This would then
allow development of separate population mod-
els that would allow assessment of the effects of
spatial structure and demographic differences
among the populations of origin (e.g., how do
the population-level consequences of fatalities
differ if they are composed of 25% vs. 75% north-
ern red tails).

A second challenge to implementation of this
framework is in data availability. This plays out
in at least three ways. First, although range
maps and population estimates are available for
many of the world’s bird species (BirdLife Inter-
national and Handbook of the Birds of the
World 2016), the accuracy and precision of those
maps and estimates vary by region and species.
Likewise, similar data often are not available for
other wildlife species, and there are very limited
data for some taxa such as invertebrates
(Dopheide et al. 2019). Furthermore, in cases
where those data are available, they may not be
estimated in a way that allows them to be effec-
tively matched to a probabilistically defined
catchment area. Second, data are often lacking
to describe the consequence of a stressor on
wildlife. In the case of fatalities and other direct
effects, these gaps can also be addressed
through increased monitoring or, in a few cases,
through increased availability of existing data.
However, in the case of indirect effects,

addressing these gaps may require substantial
research effort and scientific advances. Third,
our population modeling used the best available
demographic information as Bayesian priors.
However, for wide-ranging species, demo-
graphic rates often vary across their range, and
we could not match demographic rates to the
regions we modeled. Thus, a demographic rate
reported from a study in Texas may not be
appropriate for a population model for animals
in California. That being the case, this frame-
work could be improved by development of
spatially explicit demographic models that
reflect ecological variation across the catchment
area.
A third challenge to implementing this frame-

work lies in constraints in our data collection.
For example, the tools used to establish migra-
tory connectivity or to link affected individuals
to catchment areas (isotopes, genetics, telemetry,
dataloggers) often are imprecise or difficult to
apply after an individual is affected or killed.
These tools all provide more information than
historically was available for managers to make
decisions. That said, imprecision in the estimate
of catchment area size may have a dramatic
influence on population estimates and thus on
estimates of the consequence of a particular stres-
sor to a species. This observation highlights the
importance of developing tools that more pre-
cisely identify origins of migratory individuals,
especially those that are sampled after being
affected or killed by anthropogenic stressors.
Likewise, all these techniques require substantial
initial investment, either to build reference data-
sets or to trap and track animals, before assess-
ments are made. Integration of multiple types of
data is one way to increase the precision of these
tools (Clegg et al. 2003, Kelly et al. 2005, Paxton
et al. 2013, Rundel et al. 2013, Nelson et al.
2015). However, work in this area is still in the
early stages and it requires further development.

Technical areas for improvement
There also are several technical areas in which

we think the framework can be improved. In par-
ticular, improvements could be made in handling
process uncertainty, sublethal effects, and non-
point sources of stress. Although uncertainty is
addressed via the Bayesian population models
and the sensitivity analysis for the CIU, there is
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ample room to address uncertainty in other steps
in our framework. Likewise, although we only
focused on lethal effects to wildlife, sublethal
effects often are demographically relevant and
the framework could be improved by incorporat-
ing those impacts. Finally, our work evaluated
consequences of two point sources of mortality.
There may be additional challenges to using this
framework to understand the effects of non-
point, broadly distributed, threats such as those
from environmental toxins or window strike,
both of which can influence large numbers of
wildlife across a very large landscape.

Finally, our Bayesian modeling framework has
a number of constraints. Although effective at
dealing with uncertainty, these models can be
difficult to implement simultaneously for multi-
ple species. Because our modeling approach
focused exclusively on survival, we may have
missed demographic effects related to other pro-
cesses. Building models that incorporate effects
on other parameters, especially population
growth rate or population size, is therefore an
important research need. Furthermore, the mod-
els we implemented ignored immigration, emi-
gration, density dependence, and Allee effects.
Likewise, they make at least two simplifying
assumptions—that fatalities caused by an
anthropogenic stressor were additive and that
there were no temporal patterns or age structure
within the fatalities. Addressing these types of
issues is of high priority in the field of population
ecology (Caswell 2001), and integrating improve-
ments in these areas would improve this frame-
work.

Real-world implementation
Although the two examples we provide are

focused on renewable energy, the framework we
develop here should be broadly applicable in a
wide range of circumstances. For example, road-
way mortality is an important source of fatalities
of birds (Loss et al. 2014b), insects (Baxter-Gilbert
et al. 2015), terrestrial (Visintin et al. 2017) and
volant mammals (Fensome and Mathews 2016),
and amphibians (Hamer et al. 2015). In each of
these situations, our framework could be applied
to understand population-level consequences of
these fatalities. As an example, stable isotope
tools similar to those we describe here were used,
albeit without the demographic context we

apply, to show that the 2009 crash of US Airways
Flight 1549 in New York, USA, was caused by
geese that were migratory, not local, in origin
(Marra et al. 2009).
Implementation of this framework is depen-

dent, in at least two stages, on information from
conservation practitioners and other stakehold-
ers (Fig. 1). In particular, stakeholders have an
important role in deciding how to define focal
species and the population of interest. As such,
those decisions and the goals of the end user can
dramatically influence the outcomes of this pro-
cess. For example, when defining a potentially
affected population, an end user who is an ecol-
ogist may focus on groups of animals defined as
evolutionary or ecologically significant units. In
contrast, an end user who is a wildlife or land
manager may instead focus on animals within a
biologically arbitrary but management-relevant
political boundary. Depending on the questions
being asked, either may be an appropriate defi-
nition of the populations of interest. Further-
more, although the BCR and stable isotope
approaches we used to define a catchment area
were biologically meaningful, this approach
may not always align with management goals.
As such, in other situations, the catchment area
could be defined with other probabilistic or non-
probabilistic tools. Thus, defining the population
of interest so that it is relevant to management
decisions is of primary importance to bridging
the research-implementation gap that can bede-
vil translation of research information into con-
servation action.

CONCLUSIONS

The framework outlined here has potentially
broad applicability for addressing the popula-
tion-level effects of anthropogenic stressors on
terrestrial wildlife. The types of approaches we
suggest using are well established, but our
framework provides a novel, management-rele-
vant unification of these separate tools. This
framework is also largely platform independent
—it can accommodate different definitions of
populations of interest, different tools to estimate
catchment areas, different types of population
models, and even different evaluations of its
effectiveness. Perhaps its greatest limitation
though is in the availability of suitable field data
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that estimate numbers of individuals affected,
population sizes, and demographic parameters.
Thus, as data quality improves, we anticipate
this framework will become more generally use-
ful and its predictions more accurate.
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2015. Stable hydrogen isotopes identify leapfrog
migration, degree of connectivity and summer dis-
tribution of Golden Eagles in eastern North Amer-
ica. Condor 117:414–429.

Oberhauser, K., R. Wiederholt, J. E. Diffendorfer, D.
Semmens, L. Ries, W. E. Thogmartin, L. Lopez-
Hoffman, and B. Semmens. 2017. A trans-national
monarch butterfly population model and implica-
tions for regional conservation priorities. Ecological
Entomology 42:51–60.

O'Brien, S. H., A. S. C. P. Cook, and R. A. Robinson.
2017. Implicit assumptions underlying simple har-
vest models of marine bird populations can mis-
lead environmental management decisions.
Journal of Environmental Management 201:163–
171.

O'Shaughnessy, E., J. Heeter, and J. Sauer. 2018. Status
and trends in the U.S. Voluntary Green Power Mar-
ket: 2017 Data. National Renewable Energy

Laboratory. NREL/TP-6A20-72204, Golden, Color-
ado, USA. https://www.nrel.gov/docs/fy19osti/
72204.pdf

Panuccio, M. 2005. Protection of migratory raptors in
the Mediterranean. Sustainable Mediterranean
35:13–14.

Partners in Flight (PIF). 2019. Population estimates
database, Version 3.0. Available at http://pif.birdc
onservancy.org/PopEstimates

Paxton, K. L., M. Yau, F. R. Moore, and D. Irwin. 2013.
Differential migratory timing of western popula-
tions of Wilson's Warblers (Cardellina pusilla)
revealed by mitochondrial DNA and stable iso-
topes. Auk 130:689–698.

Preston, C. R., and R. D. Beane. 2009. Red-tailed Hawk
(Buteo jamaicensis), version 2.0. In A. F. Poole, edi-
tor. The birds of North America. Cornell Lab of
Ornithology, Ithaca, New York, USA.

Pylant, C. L., D. M. Nelson, M. C. Fitzpatrick, J. E.
Gates, and S. R. Keller. 2016. Geographic origins
and population genetics of bats killed at wind-en-
ergy facilities. Ecological Applications 26:1381–
1395.

Ruegg, K. C., E. C. Anderson, K. L. Paxton, V. Apke-
nas, S. Lao, R. B. Siegel, D. F. Desante, F. Moore,
and T. B. Smith. 2014. Mapping migration in a
songbird using high-resolution genetic markers.
Molecular Ecology 23:5726–5739.

Rundel, C. W., et al. 2013. Novel statistical methods
for integrating genetic and stable isotope data to
infer individual-level migratory connectivity.
Molecular Ecology 22:4163–4176.

Runge, M. C., J. R. Sauer, M. L. Avery, B. F. Blackwell,
and M. D. Koneff. 2009. Assessing allowable take
of migratory birds. Journal of Wildlife Manage-
ment 73:556–565.

Rushing, C. S., J. A. Hostetler, T. S. Sillett, P. P. Marra, J.
A. Rotenberg, and T. B. Ryder. 2017. Spatial and
temporal drivers of avian population dynamics
across the annual cycle. Ecology 98:2837–2850.

Santos, H., L. Rodrigues, G. Jones, and H. Rebelo.
2013. Using species distribution modelling to pre-
dict bat fatality risk at wind farms. Biological Con-
servation 157:178–186.

Sauer, J., D. K. Niven, J. E. Hines, D. J. Ziolowski Jr, K.
L. Pardieck, J. E. Fallon, and W. L. Link. 2017. The
North American Breeding Bird Survey, Results and
Analysis 1966–2015, Version 2.07.2017. USGS
Patuxent Wildlife Research Center, Laurel, Mary-
land, USA.

Saunders, S. P., M. T. Farr, A. D. Wright, C. A. Bahlai, J.
W. Ribeiro Jr, S. Rossman, A. L. Sussman, T. W.
Arnold, and E. F. Zipkin. 2019. Disentangling data
discrepancies with integrated population models.
Ecology 100:e02714.

 ❖ www.esajournals.org 22 March 2020 ❖ Volume 11(3) ❖ Article e03046

KATZNER ET AL.

https://www.nrel.gov/docs/fy19osti/72204.pdf
https://www.nrel.gov/docs/fy19osti/72204.pdf
http://pif.birdconservancy.org/PopEstimates
http://pif.birdconservancy.org/PopEstimates


Schaub, M. 2012. Spatial distribution of wind turbines
is crucial for the survival of red kite populations.
Biological Conservation 155:111–118.

Shugart, H., T. Smith, and W. Post. 1992. The potential
for application of individual-based simulation
models for assessing the effects of global change.
Annual Review of Ecology and Systematics 23:15–
38.

Smallwood, K. S., and C. Thelander. 2008. Bird mortal-
ity at the Altamont Pass Wind Resource Area, Cali-
fornia. Journal of Wildlife Management 72:215–
223.

Steenhof, K., J. L. Brown, and M. N. Kochert. 2014.
Temporal and spatial changes in golden eagle
reproduction in relation to increased off highway
vehicle activity. Wildlife Society Bulletin 38:682–
688.

Sur, M., J. R. Belthoff, E. J. Bjerre, B. A. Millsap, and T.
E. Katzner. 2018. The utility of point count surveys
to predict wildlife interactions with wind energy
facilities: an example focused on golden eagles.
Ecological Indicators 88:126–133.

Thaxter, C. B., G. M. Buchanan, J. Carr, S. H. Butchart,
T. Newbold, R. E. Green, J. A. Tobias, W. B. Foden,
S. O'Brien, and J. W. Pearce-Higgins. 2017. Bird and
bat species’ global vulnerability to collision mortal-
ity at wind farms revealed through a trait-based
assessment. Proceedings of the Royal Society B:
Biological Sciences 284:20170829.

Thompson, S. J., D. H. Johnson, N. D. Neimuth, and C.
A. Ribic. 2015. Avoidance of unconventional oil
wells and roads exacerbates habitat loss for grass-
land birds in the North American great plains. Bio-
logical Conservation 192:82–90.

Unitt, P. 2004. The San Diego county bird atlas. Sunbelt
Publications, El Cajon, California, USA.

USGS Bird Banding Laboratory. 2019. North American
bird banding and band encounter data set. Patux-
ent Wildlife Research Center, Laurel, Maryland,
USA.

Vander Zanden, H., D. Nelson, M. Wunder, T. Con-
kling, and T. Katzner. 2018. Application of iso-
scapes to determine geographic origin of terrestrial
wildlife for conservation and management. Biolog-
ical Conservation 228:268–280.

Visintin, C., R. Van Der Ree, and M. A. McCarthy.
2017. Consistent patterns of vehicle collision risk
for six mammal species. Journal of Environmental
Management 201:397–406.

Voigt, C. C., A. G. Popa-Lisseanu, I. Niermann, and S.
Kramer-Schadt. 2012. The catchment area of wind
farms for European bats: a plea for international
regulations. Biological Conservation 153:80–86.

Volterra, V. 1926. Fluctuations in the abundance of a
species considered mathematically. Nature
118:558–560.

Wade, P. R. 1998. Calculating limits to the allowable
human-caused mortality of cetaceans and pin-
nipeds. Marine Mammal Science 14:1–37.

Walston, L. J. Jr, K. E. Rollins, K. E. LaGory, K. P.
Smith, and S. A. Meyers. 2016. A preliminary
assessment of avian mortality at utility-scale solar
energy facilities in the United States. Renewable
Energy 92:405–414.

Watson, R. T., P. S. Kolar, M. Ferrer, T. Nyg�ard, N. John-
ston, W. G. Hunt, H. A. Smit-Robinson, C. Farmer,
M. Huso, and T. Katzner. 2018. Raptor interactions
with wind energy: case studies from around the
world. Journal of Raptor Research 52:1–18.

Webster, M. S., P. P. Marra, S. M. Haig, S. Bensch, and
R. T. Holmes. 2002. Links between worlds: unravel-
ing migratory connectivity. Trends in Ecology and
Evolution 17:76–83.

White, G. C. 2000. Population viability analysis: data
requirements and essential analyses. Pages 288–331
in M. C. Pearl, L. Boitani, and T. K. Fuller, editors.
Research techniques in animal ecology: controver-
sies and consequences. Columbia University Press,
New York, New York, USA.

White, G. C., and K. P. Burnham. 1999. Program
MARK: survival estimation from populations of
marked animals. Bird Study 46:120–138.

Williams, B. K., J. D. Nichols, and M. J. Conroy. 2002.
Analysis and management of animal populations:
modeling, estimation, and decision making. Aca-
demic Press, San Diego, California, USA.

Winder, V. L., A. J. Gregory, L. B. McNew, and B. K.
Sandercock. 2015. Responses of male Greater
Prairie-Chickens to wind energy development.
Condor 117:284–296.

Zimmerman, G. S., B. A. Millsap, M. L. Avery, J. R.
Sauer, M. C. Runge, and K. D. Richkus. 2019. Allow-
able take of black vultures in the eastern United
States. Journal of Wildlife Management 83:272–282.

Zipkin, E. F., and S. P. Saunders. 2018. Synthesizing
multiple data types for biological conservation
using integrated population models. Biological
Conservation 217:240–250.

SUPPORTING INFORMATION

Additional Supporting Information may be found online at: http://onlinelibrary.wiley.com/doi/10.1002/ecs2.
3046/full

 ❖ www.esajournals.org 23 March 2020 ❖ Volume 11(3) ❖ Article e03046

KATZNER ET AL.

http://onlinelibrary.wiley.com/doi/10.1002/ecs2.3046/full
http://onlinelibrary.wiley.com/doi/10.1002/ecs2.3046/full


Appendix S1 – Ecosphere - Demographic consequences of stressors Katzner et al.  S1-1 

 

 

Ecosphere 

Assessing population-level consequences of anthropogenic stressors for terrestrial wildlife 

 

Todd E. Katzner1*, Melissa A. Braham2, Tara J. Conkling1, Jay E. Diffendorfer3, Adam E. 

Duerr4, Scott R. Loss5, David M. Nelson6, Hannah B. Vander Zanden7, Julie L. Yee8 

 

1 U.S. Geological Survey, Forest and Rangeland Ecosystem Science Center, Boise, ID, USA 

2 Division of Geology and Geography, West Virginia University, Morgantown, WV, USA 

3 U.S. Geological Survey, Geosciences and Environmental Change Science Center, Denver, 

Colorado, USA 

4 Bloom Research Inc., Los Angeles, California, USA 

5 Department of Natural Resource Ecology & Management, Oklahoma State University, 

Stillwater, OK, USA 

6 University of Maryland Center for Environmental Science, Appalachian Laboratory, 

Frostburg, MD, USA 

7 University of Florida, Department of Biology, Gainesville, FL, USA 

8 U.S. Geological Survey, Western Ecological Research Center, Santa Cruz, CA, USA 

 

* Correspondence: tkatzner@usgs.gov 

 



Appendix S1 – Ecosphere - Demographic consequences of stressors Katzner et al.  S1-2 

 

Appendix S1. Detailed description of the process used to interpret demographic effects to 

greater roadrunners affected by solar energy in the Mojave Desert.  

 

1. Framing the problem. For the purposes of this analysis, we made several assumptions about 

the Mojave roadrunner population. First, we assumed no temporal variation in the location of 

the catchment area over the 8 years of the study and so we included all fatalities sampled in 

our stable isotope analysis regardless of when they occurred. Second, we assumed there was 

no across-year temporal variation in fatality rates. This allows us to assume that the limited 

monitoring data collected for these solar facilities accurately reflects actual mortality rates. 

Likewise, because we use data from Breeding Bird Surveys (BBS; Sauer et al. 2017) to 

inform population models, we assumed that the 10-year trend in BBS data incorporate 

fatalities at solar energy facilities within the past 5 years. See additional details in the main 

text.  

 

2. Use field-based count data to quantify the effect of the stressor on individuals. All detail is in 

the main text.  

 

3. Characterize the location and size of the population of interest. We used analysis of stable 

hydrogen isotopes in feathers from individuals killed at solar facilities, together with range 

maps (BirdLife International 2016) and population estimates from Partners in Flight (PIF 

2019) to characterize the spatial extent and size of the population of interest. See also Fig. 2 

in the main text for a flowchart describing this process.   

a. Stable hydrogen isotope analysis was performed on feather samples from 24 

roadrunners killed at 3 solar facilities (Ivanpah Solar Energy Generating System, 

Genesis Solar Energy Center, Desert Sunlight) from 2015 to 2017 (Appendix S3: 

Table S1). The feather samples were cleaned using 1:200 Triton X-100 detergent, 

100% ethanol, and then air-dried (Coplen and Qi, 2012). Samples were analyzed 

alongside international standards (USGS42; USGS43; CBS, Caribou Hoof Standard; 

KHS, Kudu Horn Standard; Coplen and Qi 2012; Wassenaar and Hobson 2003) and 

an internal keratin standard (porcine hair and skin, product # K3030; Spectrum 

Chemicals, New Brunswick, NJ, USA) using a comparative equilibration process 

(Wassenaar and Hobson, 2003) to account for exchange of keratin hydrogen with 

ambient vapor. Samples were analyzed for δ2H values using a ThermoFisher high 

temperature conversion/elemental analyzer (TC/EA) pyrolysis unit interfaced with a 

ThermoFisher Delta V+ isotope ratio mass spectrometer. Values of δ2H were 

normalized to the Vienna Standard Mean Ocean Water-Standard Light Antarctic 

Precipitation (VSMOW-SLAP) scale using USGS42, USGS43, CBS, and KHS. The 

δ2H values of non-exchangeable hydrogen of these standards are -72.9, -44.4, -157.0, 

and -35.5‰, respectively (Wassenaar and Hobson; 2003; Soto et al. 2017).  

b. For each individual, we generated an isotope-based probability-of-origin map 

(Vander Zanden et al. 2018) to characterize the likelihood that the bird originated in 

any particular pixel within the map. We used the growing season δ2H precipitation 

isoscape (Bowen et al. 2005) scaled to feather values based on the equation for a 

compilation of raptor feathers (2Hfeather = 26.59 + 1.3 * 2Hprecip; Wunder et al. 2009) 

and restricted to the range map for the species (BirdLife International 2016; Fig 3).  

We used a pooled variance that included 1) the standard deviation of the 2H 
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precipitation isoscape calculated from the confidence intervals of the mean annual 

isoscape with a 20’ x 20’ resolution (Bowen and Revenaugh, 2003); 2) within-

individual variance from the dataset itself calculated as the mean standard deviation 

for individuals from which more than one feather was analyzed (n = 8), which was 

5.9 ‰; and 3) analytical variance, calculated as the long-term standard deviation of 

2H values in a keratin standard at the UMCES lab, which was 2.3 ‰.  

c. We then normalized this probability-of-origin map for each individual so that all 

pixels in a single map summed to one.  

d. We averaged these 24 probability-of-origin maps and we called the averaged map an 

“unconstrained catchment area” (Fig. 2) because it included information about 

geographic origin inferred from isotope data but was not constrained by other 

information on roadrunner distribution and movements.  

e. Then we calculated the odds ratios for each cell as (P(j)/(1-P(j))/(P(max)/(1-P(max)) 

(Vander Zanden et al. 2018). 

f. Because the isotope data suggested that most birds were local and from a region 

approximately defined by the Mojave Desert Bird Conservation Region (BCR #33; 

Clark et al. 2000), we further modified the catchment area by constraining it to the 

boundaries of that BCR (Fig. 3). We focused exclusively on BCR #33 because the 

isotope data suggested that most of the high probability pixels were from within this 

BCR, suggesting that most birds grew their feathers within the BCR. The biology of 

the species was consistent with this, since roadrunner home ranges are small (Kelley 

et al. 2011, Montalvo et al. 2014), and thus even dispersing individuals likely never 

travel outside of the BCR. It is important to note that if the isotope data suggested that 

many birds originated far from the source of fatalities, we would not have focused 

only on BCR #33.  

The region defined by the BCR was termed a “constrained catchment area” (Fig. 

2) because it includes information about geographic origin as inferred from isotope 

data and constrained by available ancillary information for the species. Because the 

boundaries of the catchment area and the BCR corresponded exactly, 100% of the 

BCR is within the catchment area (“proportion of BCR within the catchment area” = 

1; Fig. 2, Appendix S3: Table S2). 

g. Subsequently, we summed the odds ratio values for all pixels within the constrained 

catchment area (the “sum of pixel values in BCR” in Fig. 2 and Appendix S3: Table 

S2).  

h. We counted the number of pixels in BCR 33 and we divided the sum of pixel values 

in the BCR by the total number of pixels in the BCR. We call this the “stressor-

affected proportion” of the catchment area (Appendix S3: Table S2). This metric is an 

index that ranges from 0 to 1 and whose value is indicative of the isotope-based 

prediction of the likelihood that the dead birds originated from that region. 

i. We obtained from the Partners in Flight Population Estimates Database (PIF 2019) 

the estimated number of roadrunners in BCR 33. Since there was 100% overlap 

between the constrained catchment area and the BCR, this estimate is the same as the 

area adjusted population estimate (Fig. 2; Appendix S3: Table S2; see Appendix S2 

for an example where we modify the estimated population size within a BCR). For 

this example, we ignore the small part of the BCR within Mexico, as PIF does not 

provide population estimates for BCRs in Mexico.  
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j. We multiplied the stressor-affected proportion of the catchment area by the PIF 

population estimate for the BCR to estimate the proportion of the roadrunner 

population within the BCR that was potentially affected by fatalities at solar energy 

facilities. 

We call this the BCR-specific “potentially affected population” and it represents 

an estimate of the number of roadrunners that were potentially at risk of fatality at 

these five solar energy facilities in the Mojave Desert. 

k. The population estimate for roadrunners in BCR 33 is 69,000 individuals and the 

stressor-affected proportion of the catchment area was 0.7822. Multiplying these two 

together suggests the potentially affected population was 53,973 birds (Np; Tables 1, 

Appendix S3: Table S2).  

 

4. Build rate-based demographic models for the population. We built a Bayesian integrated 

population model (IPM) for roadrunners in our catchment area. In brief, we developed a 

multi-age IPM to estimate age-specific survival and fecundity as a function of population 

growth and the previously-derived demographic parameters. We calculated population 

growth rates (λ) from BCR-specific annual indices derived from the North American 

Breeding Bird Survey (BBS) for 1968–2015 (Sauer et al. 2017) and we used published 

demographic estimates for survival (sa = 0.3586 ± 0.3822 (�̅� ± σ2); Folse and Arnold 1978, 

Kelley et al. 2011) and fecundity (f = 0.88 ± 1, given as offspring per adult; Ohmart 1973, 

Hughes 2011) to inform prior distributions in the model. These reports do not provide age-

specific survival estimates so we used weakly informative priors (Kruschke 2014) while 

constraining subadult survival to not exceed mean adult survival.  

We analyzed 3 candidate models with increasing constraints on survival and 

fecundity priors. This allowed us to limit non-identifiability of parameters that result from the 

multiple combinations of demographic parameters that produce the same estimate of λ. We 

then used DIC values to determine the best-fit model for subsequent analyses and we used 

that model as our estimate of current conditions. 

Once we identified a model of current conditions, we used survival rate estimates 

from the model to approximate present demography (sa = 0.611, σ = 0.06). Mortality rates in 

these current conditions (1 - s = 0.389) are, implicitly, a result of all causes of death, natural 

and anthropogenic, and include current fatalities from solar energy generation. We multiplied 

the mortality rate by the estimate of population size within the catchment area to calculate the 

total number of individual birds within the catchment area that would be expected to die per 

annum (i.e., Dt = total deaths per year; Table 1). Finally, we calculated the mortality rate in 

the absence of present levels of mortality from solar energy (swos) and we calculated the 

counterfactual ratio of survivorship with and without those current deaths (sa/swos; Table 1). 

 

5. Assess the significance to the population of the rate changes brought on by the stressor. We 

assessed the population significance of solar-caused fatalities by creating a ratio of adult 

survival values with and without fatalities in the Mojave Desert (Table 1). This is the 

Counterfactual of Impacted and Unimpacted Populations (CIU; Green et al. 2016, Cook and 

Robinson 2017).  

Subsequently, we performed a sensitivity analysis on the CIU to understand how 

uncertainty in field-based estimates of numbers of fatalities may influence our interpretation 

of population-level effects (Appendix S3: Table S3). To do this, we then calculated the 
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survival rate that would be expected with increased mortality from solar energy generation 

(swim) as follows,  

 

swim = -(Dt - Np)/ Np       (1) 

 

We then increased the number of deaths from solar by increments of 100 to understand the 

consequence for survivorship. To hold survivorship levels at 95% of their current level would 

require 1500 fatalities of roadrunners per year. To hold them at 90% of their current level 

would require 3200 fatalities.  
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Appendix S2. Detailed description of the process used to interpret demographic effects to red-

tailed hawks affected by wind turbines at Altamont Pass Wind Resource Area.  

 

1. Framing the problem.  We made similar assumptions here as in the roadrunner example. 

First, we again used BBS data in our models (Sauer et al. 2017) and we included all sampled 

fatalities in our stable isotope analysis regardless of the date on which the carcass was found. 

Second, field fatality data and dead birds were available for the time period 2005 – 2017 and 

thus interpretation of our analyses is appropriate for that time period. However, the time 

frame for the collection of fatality data (2007 – 2017) does not match exactly with the time 

frame in which tissue samples were collected from carcasses. For simplicity, we assume that 

this difference is unimportant to our results. See additional details in the main text.  

 

2. Use field-based count data to quantify the effect of the stressor on individuals. All detail is in 

the main text.  

 

3. Characterize the location and size of the population of interest. We again used analysis of 

stable hydrogen isotopes in feathers from individuals killed at APWRA, together with range 

maps, flyway maps and population estimates from Partners in Flight (PIF 2019) to 

characterize the population of interest. See also Fig. 2 in the main text for a flowchart 

describing this process.   

a. Stable isotope analysis was performed as in Appendix S1 and relied on feather 

samples from 86 red-tailed hawks killed at APWRA during 2007 – 2017 (Appendix 

S3: Table S4). 

b. For each individual, we generated an isotope-based probability of origin map as in 

step 3b of Appendix S1.  Again, we used the raptor feather equation to rescale the 

growing season precipitation isoscape and constrained to the red-tailed hawk range 

map (BirdLife International 2016; Fig 4).  The pooled variance process was the same, 

except the individual variance measured in red-tailed hawks was 5.6 ‰ (n=9). 

c. We used geographic assignment process with a 5:1 odds ratio threshold to 

characterize individual hawks as “local” or “non-local” (i.e., recent migrants or 

itinerants) to the region around APWRA (this odds-ratio assignment process is 

described in detail in Vander Zanden et al. 2018). We classified 33 birds as local and 

53 as non-local.  

d. We then normalized the probability of origin maps so that all pixels summed to 1 in 

each map, averaged them separately across local and non-local birds, and calculated 

the odds ratios for each cell in the two maps, to form “unconstrained catchment 

areas” as detailed in Appendix S1, 3c, d and e. 

e. We restricted the two maps (local and non-local) resulting from (d) to the area 

defined by a 5:1 odds ratio (Fig. 2, Fig. 4). At this point, the analyses diverged 

slightly for the local and non-local populations. Steps f through j address the non-

local populations, whereas step k addresses the local populations.  

f. We further restricted the non-local area to a range defined by flyways. Because red-

tailed hawks from California are known to cross between the Pacific and Central 

Flyways (USFWS 2015, Bloom et al. 2015), we retained all pixels from these two 

flyways. However, we did not expect these birds to enter into the Mississippi and 

Atlantic Flyways, so we excluded those pixels. We called the resulting map a 
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“constrained catchment area”. 

g. We overlaid North American Bird Conservation Regions (BCRs, Fig. 4; Clark et al. 

2000) on the two constrained catchment areas. We excluded portions of the 

constrained catchment area that overlapped BCRs in Mexico, as PIF does not provide 

population estimates for those BCRs. 

h. For the non-local constrained catchment area, within each BCR that overlapped any 

part of the catchment area, we calculated the percentage of the area of the BCR that 

overlapped the catchment area. We called this the “proportion of BCR within the 

catchment area” (Fig. 2, Appendix S3: Table S5). For each BCR, we then calculated 

the # of cells in the catchment area, the sum of pixel values, and the stressor-affected 

proportion of the population (Appendix S3: Table S5), as in the prior example.  

i. For each BCR in the non-local catchment area, we again obtained the estimated 

population size of red-tailed hawks from the Partners in Flight Population Estimates 

Database (PIF 2019). We multiplied that number by the proportion of the BCR within 

the catchment area to estimate the number of birds from that BCR in the catchment 

area (Appendix S3: Table S5). In cases where the BCR boundary overlapped the 

boundary of the Central Flyway, we used the PIF estimated population size for the 

full BCR, rather than adjusting that PIF estimate by the proportion of the BCR within 

in the Central Flyway. We call this the “area adjusted population estimate” for the 

BCR. This approach assumes an even distribution of birds across the BCR. Although 

imperfect, we use this approach because it allows us to account for the fact that the 

boundaries of the BCR do not line up perfectly with those of the catchment area.  

j. For each BCR in the non-local catchment area, we then multiplied the stressor-

affected proportion of the catchment area (as defined in Appendix S1, step 3h) by the 

area adjusted population estimate to estimate the potentially affected population 

(Appendix S3: Table S5). In this case, this metric incorporates information about both 

the proportion of the BCR that falls within the catchment area and the likelihood of 

origin of feathers from that BCR (in the roadrunner example, the metric only 

incorporated likelihood of origin information, because we did not have to account for 

partial overlap of BCRs and the catchment area).  

k. The boundary of the odds ratio-defined area describing the local catchment area 

followed the majority of the boundary of BCR #32, the BCR in which APWRA is 

located. We therefore assumed that the catchment area for these birds was defined by 

the BCR. We then followed steps g to step j, above, to calculate a potentially affected 

population of red-tailed hawks in BCR #32 (Appendix S3: Table S5). This process 

was very similar to the process implemented in the roadrunner example.   

l. Subsequently, we summed the potentially affected populations for all local and non-

local BCRs. This process resulted in estimates of 98,217 and 605,484 red-tailed 

hawks within the local and non-local potentially affected populations, respectively 

(Np; Tables 1, Appendix S3: Table S5). Thus, in total we estimate that there are 

703,755 total birds potentially affected by this stressor. 

 

4. Build demographic models for the population. We again built a Bayesian integrated 

population model (IPM) for red-tailed hawks in each of the two potentially affected 

populations (local and non-local). These models were constructed as before and again based 

on BBS data (Sauer et al. 2017). We used demographic estimates for juvenile (sj = 0.4075 ± 
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0.0427 (�̅� ± σ2); Henny and Wight 1972, Luttich et al. 1971) and adult survival (sa = 0.7750 

± 0.0004; Henny and Wight 1972) and fecundity (f = 0.7079 ± 1.031, given as offspring per 

adult; derived from 14 citations given in Preston and Beane 2009) found in existing literature 

to inform prior distributions in the model.  We analyzed candidate models and information 

theoretic data as before to estimate current conditions. 

We again used survivorship rates estimated from the best fit model to approximate 

current conditions (sa = 0.795, σ = 0.02; here we ignore juvenile survival and we assume that 

adult survival is the same for local and non-local birds). We assumed all fatalities were adults 

and we used mortality rates to estimate Dt for red-tailed hawks in each BCR, in the local and 

non-local populations, and in the combined potentially affected population (Table 1).  

Our stable isotope data suggested that 38% of birds killed each year are local. Thus, of 

the 169 deaths per year, 64 are local and 105 are non-local (Table 1). From this we were able 

to estimate swos and the CIU as in the prior example, but this time for both the local and non-

local catchment areas (Tables 1, Appendix S3: Table S6).  

 

5. Assess the significance to the population of the rate changes brought on by the stressor. 

Finally, we assessed the significance to the population of the impact of fatalities caused by 

wind energy with the CIU and a sensitivity analysis on this metric, as before (Table 1, 

Appendix S3: Table S6). Details of this are in the main text. 

 

Literature Cited 

BirdLife International and Handbook of the Birds of the World. 2016. Bird species distribution 

maps of the world. Version 6.0. Available at 

http://datazone.birdlife.org/species/requestdis. 

Bloom, P. H., M. D. McCreary, J. M. Scott, J. M. Papp, K. J. Sernka, S. E. Thomas, J. W. Kidd, 

E. H. Henkel, J. L. Henkel and M. J. Gibson. 2015. Northward summer migration of red-

tailed hawks fledged from southern latitudes. Journal of Raptor Research 49:1-17 

Bowen, G. J. and J. Revenaugh. 2003. Interpolating the isotopic composition of modern meteoric 

precipitation. Water Resources Research 39:1299.  

Bowen, G. J., L. I. Wassenaar and K. A. Hobson. 2005. Global application of stable hydrogen 

and oxygen isotopes to wildlife forensics. Oecologia 143:337–348.  

Clark, J. R., D. Waller, J. A. Kushlan, G. T. Meyers, S. Senner, S. Yaich, G. Vandel, G. 

Fenwick, V. Mexainis, R. D. Sparrowe, A. Wentz and D. Pashley. 2000. North American 

Bird Conservation Initiative: Bird conservation region descriptions, a supplement to the 

North American Bird Conservation Initiative Bird Conservation Regions Map. US 

NABCI committee.  

Coplen T. B. and H. P. Qi. 2012. USGS42 and USGS43: Human-hair stable hydrogen and 

oxygen isotopic reference materials and analytical methods for forensic science and 

implications for published measurement results. Forensic Science International 214:135-

141. 

Henny, C. J. and H. M. Wight. 1972. Population ecology and environmental pollution: red-tailed 

hawk and Cooper’s hawk. US FWS Wildlife Research Report 2:229-250.  

Luttich, S. N., L. B. Keith and J. D. Stephenson. 1971. Population dynamics of the red-tailed 

hawk (Buteo jamaicensis) at Rochester, Alberta. The Auk 88:75-87. 

Partners in Flight (PIF). 2019. Population Estimates Database, version 3.0. Available at 

http://pif.birdconservancy.org/PopEstimates. Accessed April 14, 2019. 



Appendix S2 – Ecosphere - Demographic consequences of stressors Katzner et al.  S2-5 

Preston, C. R. and R. D. Beane. 2009. Red-tailed Hawk (Buteo jamaicensis), version 2.0. In 

Poole, A. F. editor. The Birds of North America. Cornell Lab of Ornithology, Ithaca, 

New York, USA.  

Sauer J., D. K. Niven, J. E. Hines, D. J. Ziolowski Jr., K. L. Pardieck, J. E. Fallon, and W. L. 

Link. 2017. The North American Breeding Bird Survey, Results and Analysis 1966 - 

2015. Version 2.07.2017 USGS Patuxent Wildlife Research Center, Laurel, Maryland. 

USFWS. 2015. USFWS Administrative Waterfowl Flyway Boundaries.  Available at: 

https://ecos.fws.gov/ServCat/Reference/Profile/42276 

Vander Zanden, H., D. Nelson, M. Wunder, T. Conkling and T. Katzner. 2018. Application of 

isoscapes to determine geographic origin of terrestrial wildlife for conservation and 

management. Biological Conservation 228:268–280. 

Wassenaar L. I. and K. A. Hobson. 2003. Comparative equilibration and online technique for 

determination of non-exchangeable hydrogen of keratins for use in animal migration 

studies. Isotopes in Environmental and Health Studies 39:211-217. 

Wunder, M. B., K. A. Hobson, J. Kelly, P. P. Marra, L. I. Wassenaar, C. A. Stricker, and R. R. 

Doucett. 2009. Does a Lack of Design and Repeatability Compromise Scientific 

Criticism? A Response to Smith et al. The Auk 126:922–926. 



Appendix S3 – Ecosphere - Demographic consequences of stressors Katzner et al.  S3-1 

 
 

Ecosphere 

Assessing population-level consequences of anthropogenic stressors for terrestrial wildlife 

 

Todd E. Katzner1*, Melissa A. Braham2, Tara J. Conkling1, Jay E. Diffendorfer3, Adam E. 

Duerr4, Scott R. Loss5, David M. Nelson6, Hannah B. Vander Zanden7, Julie L. Yee8 

 

1 U.S. Geological Survey, Forest and Rangeland Ecosystem Science Center, Boise, ID, USA 

2 Division of Geology and Geography, West Virginia University, Morgantown, WV, USA 

3 U.S. Geological Survey, Geosciences and Environmental Change Science Center, Denver, 

Colorado, USA 

4 Bloom Research Inc., Los Angeles, California, USA 

5 Department of Natural Resource Ecology & Management, Oklahoma State University, 

Stillwater, OK, USA 

6 University of Maryland Center for Environmental Science, Appalachian Laboratory, 

Frostburg, MD, USA 

7 University of Florida, Department of Biology, Gainesville, FL, USA 

8 U.S. Geological Survey, Western Ecological Research Center, Santa Cruz, CA, USA 

 

* Correspondence: tkatzner@usgs.gov 

  



Appendix S3 – Ecosphere - Demographic consequences of stressors Katzner et al.  S3-2 

 

Table S1 – Stable hydrogen isotope data for feathers collected from greater roadrunners (GRRO) 

killed at solar facilities in the Mojave Desert. Data provided are the mean δ2H of the 1-3 feathers 

analyzed per bird. See main text and Appendix S1 for details on origin of birds and how these 

data were used.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Individual Species Mean δ2H 

1 GRRO -38.346 

2 GRRO -15.86 

3 GRRO -11.882 

4 GRRO -16.492 

5 GRRO -1.738 

6 GRRO -3.04 

7 GRRO -8.146 

8 GRRO -25.24 

9 GRRO -17.32 

10 GRRO -7.57 

11 GRRO -7.5 

12 GRRO -26.57 

13 GRRO -34.18 

14 GRRO -13.6 

15 GRRO -33.18 

16 GRRO -27.43 

17 GRRO -30.54 

18 GRRO -32.56 

19 GRRO -28.36 

20 GRRO -26.7 

21 GRRO -27.48 

22 GRRO -29.11 

23 GRRO -27.15 

24 GRRO 6.47 
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Table S2 – Calculations applied to each Bird Conservation Region (BCR, Clark et al. 2000) to estimate the number of greater 

roadrunners from each BCR that are at risk from an anthropogenic stressor (solar energy). The catchment area was defined based on 

the borders of BCR #33, thus in this example all pixels in the BCR were also within the catchment area (that is not the case in the 

subsequent example). The “sum of pixels in the catchment area” is the sum of the odds ratio values, estimated from hydrogen isotope 

derived probability of origin maps, for all pixels within the constrained catchment area. Maximum value of all cells within the 

probability of origin map was normalized to 1. PIF population estimates for the BCR are from PIF (2019). Mexico was excluded 

because PIF population estimates are not available for the area. 

 

 

 

BCR # 

Pixels 

out of 

catchment 

area 

Pixels in 

catchment 

area 

Proportion 

of BCR 

within 

catchment 

area 

Sum of 

values of 

pixels in 

catchment 

area 

Stressor 

affected 

proportion 

of BCRa 

PIF 

population 

estimate 

for BCR 

Area 

adjusted 

population 

estimate 

for BCRb 

Number of 

birds at risk in 

constrained 

catchment 

areac 

Number of 

birds in 

potentially 

affected 

population Np 

33 0 199 1 155.66 0.78 69,000 69,000 53,973 53,973 

 

 
a Stressor affected proportion of the BCR = (sum of values of pixels in catchment area)/(pixels in catchment area). 
b Area adjusted population estimate for the BCR = (PIF population estimate for BCR)*(proportion of BCR within catchment area) 
c Number of birds at risk in the constrained catchment area = (area adjusted population estimate for the BCR)*(stressor affected 

proportion of BCR) 
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Table S3 - Sensitivity analysis illustrating potential consequences of anthropogenic stressors on 

terrestrial wildlife. Shown below is an analysis of the result of variation in numbers of greater 

roadrunners killed at solar energy facilities in the Mojave Desert, California, USA on changes to 

a counterfactual ratio (CIU; calculation described in main text). Ds is deaths from the stressor 

(solar energy). Dt is total number of deaths per annum, calculated initially by multiplying current 

survival (0.611 in this case) by Np (number of animals potentially at risk from the stressor; 

53,973 in this case) and subsequently by adding additional deaths from the stressor (Ds). See 

main text and Appendix S1 for details on the calculations applied and the source of original 

parameter values. Rows highlighted in yellow are discussed in the text. 

 

Ds Dt 

Survival 

with 

increased 

mortality CIU 

64 20,996 0.611 1.000 

100 21,096 0.609 0.997 

200 21,196 0.607 0.994 

300 21,296 0.605 0.991 

400 21,396 0.604 0.988 

500 21,496 0.602 0.985 

600 21,596 0.600 0.982 

700 21,696 0.598 0.979 

800 21,796 0.596 0.976 

900 21,896 0.594 0.973 

1000 21,996 0.592 0.970 

1050 22,046 0.592 0.968 

1060 22,056 0.591 0.968 

1070 22,066 0.591 0.968 

1080 22,076 0.591 0.967 

1100 22,096 0.591 0.967 

1200 22,196 0.589 0.964 

1300 22,296 0.587 0.961 

1400 22,396 0.585 0.958 

1500 22,496 0.583 0.955 

1600 22,596 0.581 0.951 

1700 22,696 0.580 0.948 

1800 22,796 0.578 0.945 

1900 22,896 0.576 0.942 

2000 22,996 0.574 0.939 

2100 23,096 0.572 0.936 

2200 23,196 0.570 0.933 

2270 23,266 0.569 0.931 

2280 23,276 0.569 0.931 

2300 23,296 0.568 0.930 

Ds Dt 

Survival 

with 

increased 

mortality CIU 

2400 23,396 0.567 0.927 

2500 23,496 0.565 0.924 

2600 23,596 0.563 0.921 

2700 23,696 0.561 0.918 

2800 23,796 0.559 0.915 

2900 23,896 0.557 0.912 

3000 23,996 0.555 0.909 

3100 24,096 0.554 0.906 

3200 24,196 0.552 0.903 

3300 24,296 0.550 0.900 

3400 24,396 0.548 0.897 

3500 24,496 0.546 0.894 

3600 24,596 0.544 0.891 

3700 24,696 0.542 0.888 

3800 24,796 0.541 0.885 

3900 24,896 0.539 0.882 

4000 24,996 0.537 0.879 

4100 25,096 0.535 0.876 

4200 25,196 0.533 0.873 

4300 25,296 0.531 0.870 

4400 25,396 0.529 0.867 

4500 25,496 0.528 0.864 

4600 25,596 0.526 0.861 

4700 25,696 0.524 0.857 

4800 25,796 0.522 0.854 

4900 25,896 0.520 0.851 

5000 25,996 0.518 0.848 

 

 

 



Appendix S3 – Ecosphere - Demographic consequences of stressors Katzner et al.  S3-5 

 

Table S4 – Mean stable hydrogen isotope data for feathers collected from red-tailed hawks 

(RTHA) killed at Altamont Pass Wind Resource Area. Data provided are the mean δ2H of the 1-

3 feathers analyzed per bird. See main text and Appendix S2 for details on origin of birds and 

how these data were used.  

 

Individual Species 

Mean 

δ2H 

1 RTHA -50.4445 

2 RTHA -34.702 

3 RTHA -24.8509 

4 RTHA -51.11 

5 RTHA -42.87 

6 RTHA -24.24 

7 RTHA -25.21 

8 RTHA -27.12 

9 RTHA -20.42 

10 RTHA -70.41 

11 RTHA -21.96 

12 RTHA -88.04 

13 RTHA -44.91 

14 RTHA -72.75 

15 RTHA -65.69 

16 RTHA -21.9 

17 RTHA -19.43 

18 RTHA -43.96 

19 RTHA -60.86 

20 RTHA -22.84 

21 RTHA -26.37 

22 RTHA -20.57 

23 RTHA -46.04 

24 RTHA -73.38 

25 RTHA -33.68 

26 RTHA -45.25 

27 RTHA -24.96 

28 RTHA -27.73 

29 RTHA -35.87 

30 RTHA -34.17 

31 RTHA -22.22 

32 RTHA -41.02 

Individual Species 

Mean 

δ2H 

   

33 RTHA -28.43 

34 RTHA -61.56 

35 RTHA -32.06 

36 RTHA -20.37 

37 RTHA -5.67 

38 RTHA -15.21 

39 RTHA -37.89 

40 RTHA -52.28 

41 RTHA -59.23 

42 RTHA -56.71 

43 RTHA -53.03 

44 RTHA -61.32 

45 RTHA -62.17 

46 RTHA -23.67 

47 RTHA -34.32 

48 RTHA -25.4 

49 RTHA -29.97 

50 RTHA -79.47 

51 RTHA -27.09 

52 RTHA -10.18 

53 RTHA -35.03 

54 RTHA -29.12 

55 RTHA -6.26 

56 RTHA -39.6 

57 RTHA -46.77 

58 RTHA -52.09 

59 RTHA -46.66 

60 RTHA -80.09 

61 RTHA -66.35 

62 RTHA -38.39 

63 RTHA -27.52 

Individual Species 

Mean 

δ2H 

64 RTHA -23.11 

65 RTHA -54.31 

66 RTHA -22.31 

67 RTHA -43.22 

68 RTHA -44.36 

69 RTHA -59 

70 RTHA -48.94 

71 RTHA -59.45 

72 RTHA -77.89 

73 RTHA -19.25 

74 RTHA -17.07 

75 RTHA 16.57 

76 RTHA -38.43 

77 RTHA -30.48 

78 RTHA -51.2433 

79 RTHA -60.0667 

80 RTHA -19.2467 

81 RTHA -43.3167 

82 RTHA -18.3467 

83 RTHA -51.49 

84 RTHA -83.45 

85 RTHA -39.74 

86 RTHA -54.13 
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Table S5 – Calculations applied to each Bird Conservation Region (BCR, Clark et al. 2000) to estimate the number of red-tailed 

hawks from each BCR that are at risk from an anthropogenic stressor (wind turbines). The catchment area was defined based on an 

odds ratio approach as defined in the main text and Appendix S2. The “sum of pixels in the catchment area” is the sum of the odds 

ratio values, estimated from hydrogen isotope derived probability of origin maps, for all pixels within the constrained catchment area. 

Maximum value of all cells within the probability of origin map was normalized to 1. PIF population estimates for the BCR are from 

PIF (2019). Mexico was excluded because PIF population estimates are not available for the area. 

 

BCR # 

Pixels 

out of 

catchment 

area 

Pixels in 

catchment 

area 

Proportion 

of BCR 

within 

catchment 

area 

Sum of 

values of 

pixels in 

catchment 

area 

Stressor 

affected 

proportion of 

BCRa 

PIF 

population 

estimate 

for BCR 

Area 

adjusted 

population 

estimate 

for BCRb 

Number of 

birds at risk in 

constrained 

catchment 

areac 

Number of 

birds in 

potentially 

affected 

population Np
d 

Non-local red-tailed hawks       

5 263 230 0.467 131.776 0.573 52,000 24,260 13,899 605,484 

9 19 736 0.975 440.819 0.599 340,000 331,444 198,514  

10 639 409 0.390 147.172 0.360 190,000 74,151 26,682  

11 565 234 0.293 110.728 0.473 370,000 108,360 51,276  

15 0 48 1.000 36.543 0.761 7,900 7,900 6,014  

16 0 473 1.000 346.727 0.733 110,000 110,000 80,634  

17 105 274 0.723 88.149 0.322 91,000 65,789 21,165  

18 58 296 0.836 172.110 0.581 92,000 76,927 44,729  

19 163 206 0.558 120.322 0.584 190,000 106,070 61,954  

22 42 59 0.584 25.107 0.426 160,000 93,465 39,773  

32 109 29 0.210 12.343 0.426 150,000 31,522 13,416  

33 145 65 0.310 33.934 0.522 79,000 24,452 12,766  

34 4 103 0.963 59.384 0.577 36,000 34,654 19,980  

35 58 105 0.644 43.512 0.414 55,000 35,429 14,682  

Local red-tailed hawks        

32 0 138 1.000 90.359 0.655 150,000 150,000 98,217 98,217 

 
a Stressor affected proportion of the BCR = (sum of values of pixels in catchment area)/(pixels in catchment area). 
b Area adjusted population estimate for the BCR = (PIF population estimate for BCR)*(proportion of BCR within catchment area) 
c Number of birds at risk in the constrained catchment area = (area adjusted population estimate for the BCR)*(stressor affected 

proportion of BCR) 
d Np is the sum of the number of birds at risk in each BCR (i.e., the sum of the prior column). 
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Table S6 - Sensitivity analysis illustrating potential consequences of anthropogenic stressors on 

terrestrial wildlife. Shown below is an analysis of the result of variation in numbers of red-tailed 

hawks killed at Altamont Pass Wind Resource Area on changes to a counterfactual ratio (CIU; 

calculation described in main text). Two analyses were conducted, one for local populations and 

the other for non-local populations; see main text for details on these designations.  Ds is deaths 

from the stressor (wind energy). Dt is total number of deaths per annum, calculated initially by 

multiplying current survival (0.795 in this case) by Np (number of animals potentially at risk 

from the stressor; 605,484 in the non-local catchment area and 98,217 in the local catchment 

area) and subsequently by adding additional deaths from the stressor (Ds). See main text and 

Appendix S1 for details on the calculations applied and the source of original parameter values. 

Rows highlighted in yellow are discussed in the text. 

 

A. Non-local red-tailed hawks 

 

Ds Dt 

Survival 

with 

increased 

mortality CIU 

105 124,124 0.795 1.000 

100 124,224 0.795 1.000 

200 124,324 0.795 1.000 

300 124,424 0.795 0.999 

400 124,524 0.794 0.999 

500 124,624 0.794 0.999 

600 124,724 0.794 0.999 

700 124,824 0.794 0.999 

800 124,924 0.794 0.998 

900 125,024 0.794 0.998 

1000 125,124 0.793 0.998 

1100 125,224 0.793 0.998 

1200 125,324 0.793 0.998 

1300 125,424 0.793 0.997 

1400 125,524 0.793 0.997 

1500 125,624 0.793 0.997 

1600 125,724 0.792 0.997 

1700 125,824 0.792 0.996 

1800 125,924 0.792 0.996 

1900 126,024 0.792 0.996 

2000 126,124 0.792 0.996 

2100 126,224 0.792 0.996 

2200 126,324 0.791 0.995 

2300 126,424 0.791 0.995 

2400 126,524 0.791 0.995 

2500 126,624 0.791 0.995 

Ds Dt 

Survival 

with 

increased 

mortality CIU 

2600 126,724 0.791 0.995 

2700 126,824 0.791 0.994 

2800 126,924 0.790 0.994 

2900 127,024 0.790 0.994 

3000 127,124 0.790 0.994 

3100 127,224 0.790 0.994 

3200 127,324 0.790 0.993 

3300 127,424 0.790 0.993 

3400 127,524 0.789 0.993 

3500 127,624 0.789 0.993 

3600 127,724 0.789 0.993 

3700 127,824 0.789 0.992 

3800 127,924 0.789 0.992 

3900 128,024 0.789 0.992 

4000 128,124 0.788 0.992 

4100 128,224 0.788 0.991 

4200 128,324 0.788 0.991 

4300 128,424 0.788 0.991 

4400 128,524 0.788 0.991 

4500 128,624 0.788 0.991 

4600 128,724 0.787 0.990 

4700 128,824 0.787 0.990 

4800 128,924 0.787 0.990 

4900 129,024 0.787 0.990 

5000 129,124 0.787 0.990 
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B. Local red-tailed hawks 

 

Ds Dt 

Survival 

with 

increased 

mortality CIU 

64 20,134 0.795 1.000 

100 20,234 0.794 0.999 

200 20,334 0.793 0.997 

300 20,434 0.792 0.996 

400 20,534 0.791 0.995 

500 20,634 0.790 0.994 

600 20,734 0.789 0.992 

700 20,834 0.788 0.991 

800 20,934 0.787 0.990 

900 21,034 0.786 0.988 

1000 21,134 0.785 0.987 

1100 21,234 0.784 0.986 

1200 21,334 0.783 0.985 

1300 21,434 0.782 0.983 

1400 21,534 0.781 0.982 

1500 21,634 0.780 0.981 

1600 21,734 0.779 0.980 

1700 21,834 0.778 0.978 

1800 21,934 0.777 0.977 

1900 22,034 0.776 0.976 

2000 22,134 0.775 0.974 

2100 22,234 0.774 0.973 

2200 22,334 0.773 0.972 

2300 22,434 0.772 0.971 

2400 22,534 0.771 0.969 

2500 22,634 0.770 0.968 

Ds Dt 

Survival 

with 

increased 

mortality CIU 

2600 22,734 0.769 0.967 

2700 22,834 0.768 0.965 

2800 22,934 0.766 0.964 

2900 23,034 0.765 0.963 

3000 23,134 0.764 0.962 

3100 23,234 0.763 0.960 

3200 23,334 0.762 0.959 

3300 23,434 0.761 0.958 

3400 23,534 0.760 0.956 

3500 23,634 0.759 0.955 

3600 23,734 0.758 0.954 

3700 23,834 0.757 0.953 

3800 23,934 0.756 0.951 

3900 24,034 0.755 0.950 

4000 24,134 0.754 0.949 

4100 24,234 0.753 0.947 

4200 24,334 0.752 0.946 

4300 24,434 0.751 0.945 

4400 24,534 0.750 0.944 

4500 24,634 0.749 0.942 

4600 24,734 0.748 0.941 

4700 24,834 0.747 0.940 

4800 24,934 0.746 0.939 

4900 25,034 0.745 0.937 

5000 25,134 0.744 0.936 
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